White Noise Analysis on manifolds and irreducibility of the energy representation of a gauge group

نویسنده

  • Takahiro Hasebe
چکیده

The energy representation of a gauge group on a Riemannian manifold has been discussed by several authors, for instance, in Refs. 1, 2, 4, 5, 7 and 13. Their methods are essentially to reduce the problem to the estimate of the support of a Gaussian measure in an infinite dimensional space. The best result in this direction seems to be the one in Ref. 13. After all these contributions, the irreducibility in two dimensions has remained unsettled yet. One of the difficulties is the conformal invariance of the energy representation, i.e., when we transform the Riemannian metric g(x) into eg(x), the energy representation remains unchanged. For a historical survey of this line of research, we refer the reader to Ref. 1. In contrast to the above, Y. Shimada has recently shown the irreducibility of a gauge group on a compact Riemannian manifold in Ref. 12, applying White Noise Analysis. For a compact, oneor two-dimensional Riemannian manifold, a new result has been obtained there. We extend this result to include some class of noncompact manifolds in the presence of a weight function. Moreover, this approach is expected to be of importance to random fields on manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Irreducibility of the Energy Representation of the Gauge Group and the White Noise Distribution Theory

We consider the energy representation for the gauge group. The gauge group is the set of C∞mappings from a compact Riemannian manifold to a semi-simple compact Lie group. In this paper, we obtain irreducibility of the energy representation of the gauge group for any dimension of M . To prove irreducibility for the energy representation, we use the fact that each operator from a space of test fu...

متن کامل

On the irreducibility of the complex specialization of the representation of the Hecke algebra of the complex reflection group $G_7$

We consider a 2-dimensional representation of the Hecke algebra $H(G_7, u)$, where $G_7$ is the complex reflection group and $u$ is the set of indeterminates $u = (x_1,x_2,y_1,y_2,y_3,z_1,z_2,z_3)$. After specializing the indetrminates to non zero complex numbers, we then determine a necessary and sufficient condition that guarantees the irreducibility of the complex specialization of the repre...

متن کامل

The Effectiveness of White Noise on Test Anxiety in Elementary Students

This research is aimed at investigating the effect of white noise on elementary students’ anxiety. The research is a semi-experimental study with pretest-posttest design and control group. The population includes all the students of secondary elementary of Bavi city in the first semester of the academic year 2019-20. Out of the mentioned population, 40 students were selected by Multi-stage clus...

متن کامل

Investigating the Effects of Exposure to Continuous White Noise on SLC26A4 Gene Expression Levels in Male Rat Cochlea

Background and purpose: Irreversible damage to the inner ear is known as noise-induced hearing loss (NIHL). Exposure to excessive noise can affect the expression of genes in molecules involved in development of NIHL. SLC26A4 gene or PDS is responsible for causing both syndromic and non-syndromic deafness and is located at DFNB site. The aim of this study was to investigate the expression level ...

متن کامل

An Investigation into Cultural Representation in Interchange Textbooks

Language and culture are now deemed to be co-constitutive; hence English language teaching (ELT) textbooks should incorporate cultural aspects and promote intercultural competence. However, careful decisions should be made as regards to the cultural content of materials and the ways in which culture is represented. This study was an attempt to deconstruct the patterns of cultural representation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008